如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那
1个回答

⑴在Rt △ABC中,∠ ACB=90°,CD是AB上的中线,∴ ,∴CD=BD.

∴∠BCE=∠ABC.∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.∴△BCE∽△ABC.

∴E是△ABC的自相似点.

⑵①作图略.(根据画角等的方法,画出两个角就行了)

作法如下:(i)在∠ABC内,作∠CBD=∠A;

(ii)在∠ACB内,作∠BCE=∠ABC;BD交CE于点P.

则P为△ABC的自相似点.

②连接PB、PC.∵P为△ABC的内心,∴ ,.

∵P为△ABC的自相似点,∴△BCP∽△ABC.

∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,

∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.

∴∠A+2∠A+4∠A=180°.

∴ .∴该三角形三个内角的度数分别为720/7 、180/7 、360/7 .