已知a^x+a(-x)=u,其中a>0,x∈R,将下列各式分别用u表示出来
1个回答

(1)

a^x +a^(-x)

= [a^(x/2)]^2 + 2a^(x/2)a^(-x/2) +[a^(-x/2)^2] - 2a^(x/2)a^(-x/2)

= [a^(x/2)+a^(x/2)]^2 - 2

所以 [a^(x/2)+a^(x/2)]^2 - 2 =u

得 [a^(x/2)+a^(x/2)]^2 = u+2

从而 a^(x/2)+a^(x/2) = ±√(u+2)

(2)

a^[(3/2)x]+ a^[(3/2)x]

= [a^(x/2)]^3 + [a^(-x/2)]^3

= [a^(x/2)+a^(-x/2)]*[(a^(x/2))^2-a^(x/2)a^(-x/2)+(a^(-x/2))^2]

= ±√(u+2)*[a^x -1 +a^(-x/2)]

= ±√(u+2)*(u-1)

--------------------

梳理知识,帮助别人,愉悦自己.

“数理无限”团队欢迎你