y=(2+2sinx)/(3-cosx)的值域
1个回答

y=(2+2sinx)/(3-cosx)

显而易见,3-cosx≥2

两边同乘以3-cosx:

y(3-cosx) = 2+2sinx

2sinx+ycosx=3y-2

令cost=2√(4+y²),sint=y/√(4+y²),则有:

√(4+y²)sin(x+t) = 3y-2

sin(x+t)=(3y-2)/√(4+y²)∈[-1,1]

(3y-2)²/(4+y²)≤1

9y²-12y+4≤4+y²

8y²-12y≤0

8y(y-3/2)≤0

0≤y≤3/2

即:值域[0,3/2]