f(x)=1/[(x+3)(x-1)]=(1/4)[1/(x-1)+1/(x+3)]
令g(x)=1/(x-1),h(x)=1/(x+3)
g '(x)=-1/(x-1)²
g ''(x)=1×2/(x-1)³
g '''(x)=-1×2×3/(x-1)^4
…………
g^(n)(x)=[(-1)^n](n-2)!/[(x-1)^(n-1)]
h '(x)=1/(x+3)²
h ''(x)=-1×2/(x+3)³
h '''(x)=1×2×3/(x+3)^4
…………
h^(n)(x)= [(-1)^(n-1)](n-2)!/[(x+3)^(n-1)]
所以f^(n) (x)=(1/4){ [(-1)^n](n-2)!/[(x-1)^(n-1)]+[(-1)^(n-1)](n-2)!/[(x+3)^(n-1)] }