求n阶导y=1/[(x+3)(x-1)]
1个回答

f(x)=1/[(x+3)(x-1)]=(1/4)[1/(x-1)+1/(x+3)]

令g(x)=1/(x-1),h(x)=1/(x+3)

g '(x)=-1/(x-1)²

g ''(x)=1×2/(x-1)³

g '''(x)=-1×2×3/(x-1)^4

…………

g^(n)(x)=[(-1)^n](n-2)!/[(x-1)^(n-1)]

h '(x)=1/(x+3)²

h ''(x)=-1×2/(x+3)³

h '''(x)=1×2×3/(x+3)^4

…………

h^(n)(x)= [(-1)^(n-1)](n-2)!/[(x+3)^(n-1)]

所以f^(n) (x)=(1/4){ [(-1)^n](n-2)!/[(x-1)^(n-1)]+[(-1)^(n-1)](n-2)!/[(x+3)^(n-1)] }