原式即 BA•BC / 3 = CB•CA / 2 = AC•AB
设△ABC的面积为S,则S=1/2*bc*sinA.
又因AC•AB = bc*cosA.将bc=2S/ sinA代入得:
AC•AB =2S / tanA
∴原式即 2S / 3tanB = 2S / 2tanC = 2S / tanA
即 3tanB = 2tanC = tanA
tanA = -tan(B+C) = -tanB + tanC) / ( tanB•tanC - 1 )
设tanA = x 则 tanB = x / 3 ,tanC = x / 2
∴ x = ( x/3 + x/2 ) / ( x/3 • x/2 - 1 )
x = √11 ,-√11(舍去)
∴ tanA = √11
所以cosA=1/√12=√3/6.