数列前N项和1+2^2+3^2+…n^2=n(n+1)(2n+1)/6证明的详细过程
4个回答

∵ (n+1)³ = n³ + 3n² + 3n +1

∴ (n+1)³ - n³ = 3n² + 3n +1

n=1 时,2³ - 1³ = 3×1² + 3×1 + 1

n=2时,3³ - 2³ = 3×2² + 3×2 + 1

n=3时,4³ - 3³ = 3×3² + 3×3 + 1

……

n取n+1时(n+1)³ - n³ = 3×n² + 3×n +1

以上 n 个式子相加得:

(n+1)³ - 1³ = 3(1²+2²+3²+…+n²)+ 3(1+2+3+…+n) + n

整理得 n³ + 3n² +3n = 3(1²+2²+3²+…+n²)+ 3× n(n+1)/2 +n

n³ + 3n² +3n - 3× n(n+1)/2 - n = 3(1²+2²+3²+…+n²)

n³ + 3n² +3n - 3n²/2 - 3n/2 - n = 3(1²+2²+3²+…+n²)

n³ + 3n²/2 + n/2 = 3(1²+2²+3²+…+n²)

上式左、右交换:

3(1²+2²+3²+…+n²)= n³ + 3n²/2 + n/2

3(1²+2²+3²+…+n²)= (1/2)(2n³ + 3n² + n )

= (1/2) n( 2n² + 3n + 1)

= (1/2)n(n+1)(2n+1)

∴ 1²+2²+3²+…+n² = n(n+1)(2n+1)/3

证毕.