1.已知log12(27)= a ,求log6(16).
7个回答

本题多次应用换底公式.

log12(27)=log3(27)/log3(12)

=3/log3(3*4)

=3/[log3(3)+log3(4)]

=3/[1+log2(4)/log2(3)]…

=3/[1+2/log2(3)]

=a

所以log2(3)=2a/(3-a)…

再看所给的式子

log6(16)=log2(16)/log2(6)

=4/log2(2*3)

=4/[1+log2(3)]

将上面所求的log2(3)=2a/(3-a)代入就会得到

上式=4/[1+2a/(3-a)]

=4/[(3-a+2a)/(3-a)]…………同分

=4(3-a)/(3+a)