^2 表示平方
f(x)=(1/2-(sinx)^2)*1+(-cosx)*√3sinx
=1/2-(sinx)^2-√3sinxcosx
=1/2-(1-cos(2x))/2-√3sin(2x)/2
=cos(2x)/2-√3sin(2x)/2
=sin(π/6)cos(2x)-cos(π/6)sin(2x)
=sin(π/6-2x)
=-sin(2x-π/6)
1) f(x)的单调增区间,即sin(2x-π/6)的单调减区间
也就是2x-π/6∈[π/2+2kπ,3π/2+2kπ],k∈Z
即x∈[π/3+kπ,5π/6+kπ],k∈Z
所以f(x)的单调增区间是[π/3+kπ,5π/6+kπ],k∈Z
2) f(C)=-sin(2C-π/6)=-1,即sin(2C-π/6)=1
由于C∈(0,π),所以2C-π/6∈(-π/6,11π/6)
则2C-π/6=π/2,C=π/3
sinB=2sinA,由正弦定理知b=2a
再由余弦定理,c^2=a^2+b^2-2abcosC
(√3)^2=a^2+(2a)^2-2a*2acos(π/3)
即a^2=1,a=±1
舍掉负根,所以a=1