(1)y=sin6x+cos6x
=(sin2x+cos2x)(sin4x-sin2xcos2x+cos4x)
=sin4x-sin2xcos2x+cos4x
=(sin2x+cos2x)-3sin2xcos2x
=1-
3/4]sin22x
=[5/8]+[3/8cos4x,
故函数y=sin6x+cos6x(x∈R)的值域是[
1
4],1];
(2)由函数y=sin2x+cos2x(x∈R)的值域是{1},
函数y=sin4x+cos4x(x∈R)的值域是[[1/2],1],
函数y=sin6x+cos6x(x∈R)的值域是[[1/4],1],
…
由此归纳可得:y=sin2nx+cos2nx(n∈N*)的值域是[[1
2n−1,1],
故答案为:[
1/4],1],[
1
2n−1,1]