用数学归纳法求证:(n+1)(n+2)...(n+n)=2^n*1*3*5*7*...(2n-1)成立
证:(1)当n=1时,
左式=1+1=2,
右式=2^1*1=2,
左式=右式
∴n=1时,等式成立.
(2)假设n=k时,等式成立.
即
(k+1)(k+2)...(k+k)=2^k*1*3*5*7*...(2k-1)成立;
则n=k+1时
左式=[(k+1)+1][(k+1)+2][(k+1)+3]...[(k+1)+k)][(k+1)+(k+1)]
=(k+2)(k+3)(k+4)...(2k+1)(2k+2)
=(k+2)...(2k)(2k+1)2*(k+1)
=2*(k+1)(k+2)...(2k)(2k+1)
=2*(k+1)(k+2)...(k+k)(2k+1)
由(k+1)(k+2)...(k+k)=2^k*1*3*5*7*...(2k-1)
得
左式=2*2^k*1*3*5*...(2k-1)*(2k+1)
=2^(k+1)*1*3*5*...(2k-1)*(2k+1)=右式.
等式也成立.
故
对所有正整数,等式都成立.