解题思路:若一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于k的不等式,求出k的取值范围.
由题意知,k≠0,方程有两个不相等的实数根,
所以△>0,△=b2-4ac=(2k+1)2-4k2=4k+1>0.
又∵方程是一元二次方程,∴k≠0,
∴k>−
1
4且k≠0.
故选B.
点评:
本题考点: 根的判别式.
考点点评: 总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
注意方程若为一元二次方程,则k≠0.