将椭圆写成标准形式:
x^2/a^2+y^2/b^2=1
则 a^2=4/20=0.2
b^2=5/20=0.25
椭圆方程为:
x^2/0.2+Y^/0.25=1 ----(1)
椭圆的焦点C为:
C^2=b^2-a^2=0.25+0.2=0.05
C=0.1*sqrt(5)
割线方程为:
y=kx+b
因45度直线,故 k=1
y=x+b
当y=0时,直线通过焦点C,即x=c
0=X+b
b=-c=-0.1sqrt(5)
所以 割线为 y=x-0.1sqrt(5) ----(2)
(1),(2)联立,将(2)代入(1)
x^2/0.2+[x-0.1sqrt(5)]^2/0.25=1
X^2*0.25/0.2+[x-0.1sqrt(5)]^2=0.25
x^2*5/4+x^2-2x*0.1sqrt(5)+0.01*5=0.25
X^2*(0.45)-X*SQRT(5)-1=0
X=[SQRT(5)(+-)SQRT(5-4)]/2
X1=(SQRT(5)+1)/2
X2=(SQRT(5)-1)/2
这是直线与椭圆的两个交点的X坐标
y1=x1-0.1sqrt(5)=(sqrt(5)+1)/2-0.1sqrt(5)=0.4sqrt(5)+0.5
y2=x2-0.1sqrt(5)=(sqrt(5)-1)/2-0.1sqrt(5)=0.4sqrt(5)-0.5
AB弦长L为:
L^2=(x1-x2)^2+(y1-y2)^2
=[(SQRT(5+1)/2-(SQRT(5)+1)/2) ]^2+[0.4sqrt(5)+0.5-0.4sqrt(5)+0.5]^2
=1+1
L^2=2
L =sqrt(2)