数字特别大的平方根怎末求?例如789的平方根?
2个回答

二.教学重点与难点分析

本节重点是平方根和算术平方根的概念.平方根是开方运算基础,是引入无理数的准备知识.平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,而且直接影响到二次根式的学习. 算术根的教学不但是本章教学的重点,也是今后数学学习的重点.在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根.

本节难点是平方根与算术平方根的区别于联系.首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同.对于平方根运算不仅数有限制,而且结果有两个,这是与以前学过的数的运算很大的区别,要让学生真正理解有一定的困难.

三.教法建议

1.有特殊到一般归纳总结,平方根是平方的逆运算,得出平方根的概念后,让学生观察具体数的平方关系,分析特点归纳总结出平方根的一般规律,有利于学生理解知识的来源,了解数学的归纳思想.

2.开方与平方互为逆,与其他运算相比较对数有些条件限制,是学生从整体认识开放运算.平方根和算术平方根的区别与联系,由于是本节的难点,在讲清平方根的基础上,对比讲解算术平方根,列出两者概念、性质、运算、符号等间的区别,各知识点间的类比学生易于记忆.

3.本节主要内容是平方根和算术平方根,注意数字要简单,关键让学生理解概念.另外在文字叙述时注意语言的严谨规范.

四.平方根的定义

如果一个正数x的平方等于a,即x^2 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数.

规定:0的算术平方根是0.

平方根:一般地,如果一个数x的平方等于a,即x=a那么这个数叫做a的平方根,也就是说,如果x2=a,那么x叫做a的平方根.例如:3^2=9,3是9的平方根,(-3)^2=9,-3也是9的平方根,即3和-3都是9的平方根.[编辑本段]学生用计算器求平方根教案

一.知识结构:

二.教学重点难点分析:

教学重点是用计算器求一个正数的平方根的程序.无论实际生活,还是其他学科都会经常用到计算器求一个数的平方根,这也是学生的基本技能之一.

教学难点准确用计算器求一个正数的平方根.由于开平方运算要用到第二功能键,学生容易漏掉此步操作,在教学过程中要着重说明此键的作用功能.

三.教法建议:

在给学生讲解如何利用计算器求一个数的平方根时,讲解速度慢些首先要学生找到键操作后,再讲解下一步.尤其要强调第二功能键的作用功能,在求解时使学生了解第二功能键的必要性.另外课堂上多让要学生亲自动手实践,熟悉各键的功能及求解的步骤.