1 y=(mx+n)/(x^2+1)
yx^2-mx+y-n=0
上方程未知数为x的判别式△≥0,即
m^2-4*y*(y-n)≥0
4y^2-4ny-m^2≤0
[n-√(n^2+m^2)]/2≤y≤[n+√(n^2+m^2)]/2
已知y=(mx+n)/(x^2+1)的最大值为4,最小值为-1,可得下方程组:
[n-√(n^2+m^2)]/2=-1.(1)
[n+√(n^2+m^2)]/2=4.(2)
(1)+(2),得
n=3
(2)-(1),得
√(n^2+m^2)=5
m^2=16
m=±4
检验:
yx^2-mx+y-n=0
yx^2±4x+y-3=0
-1≤y≤4
答:m=±4,n=3
2由1/2-4/3=-5/6
5/2-10/3=-5/6
...
3985/2-5980/3=-5/6(减数与被减数都加2,其差不变)
1994+1/2-4/3+5/2-10/3+9/2-16/3+.+3985/2-5980/3
=1994+(1/2-4/3)+(5/2-10/3)+(9/2-16/3)+.+(3985/2-5980/3)
=1994-5/6*[(3985-1)/4+1]=1994-5/6*997
=-1163.167
3^后的数表示次方
1、a^m=2,a^n=3
a^(2m+3n)=(a^2m)*(a^3n)=[(a^m)^2]*[(a^n)^3]
=(2^2)*(3^3)=4*27=108
2、X^m=10 ---> X^2m=10^2=100
X^m=5 ---> X^3m=5^3=125
X^n=2 ---> X^4n=2^4=16
X^(3m+4n)=(X^3m)*(X^4n)=125*16=2000
4 本人不才,用Turbo Pascal 编了一个程序如下:
program Hwanmd(input,output);
const n=1000;
var a:array[0..n-1] of boolean; {便于统一处理,位置从0开始}
i,j,l,k:integer; {l统计已经出队人数,j为计数器}
begin
writeln;
for i:=0 to n-1 do a[i]:=true; {数组赋为true,作为初值}
write('pai lie ru xia:');
i:=-1;
j:=0;l:=0;
while l