关于数学的SOS1.设y=x平方 根号1-x分之(1+x)(1-2x),则dy=A.x平方 根号里面是1-x分之(1+x
1个回答

真多啊

1.用角ABC的正弦,余弦表示.

(1)Sin(A+B+C)

=sin[A+(B+C)]

=sinAcos(B+C)+cosA*sin(B+C)

=sinA(cosBcosC-sinBsinC)+cosA*(sinBcosC+cosBsinC)

=sinAcosBcosC-sinAsinBsinC+cosAsinBcosC+cosAcosBsinC

(2)COS(A+B+C)

=cos[A+(B+C)]

=cosAcos(B+C)-sinAsin(B+C)

=cosA(cosBcosC-sinBsinC)-sinA(sinBcosC+cosBsinC)

=cosAcosBcosC-cosAsinBsinC-sinAsinBcosC-sinAcosBsinC

2.用角ABC的正切表示tg(A+B+C)

tg(A+B+C)

=tg[A+(B+C)]

=[tgA+tg(B+C)]/[1-tgA*tg(B+C)]

=tgA+[(tgB+tgC)/(1-tgBtgC)]/[1-tgA*(tgB+tgC)/(1-tgBtgC)]

=[tgA(1-tgBtgC)+tgB+tgC]/[1-tgBtgC-tgA*(tgB+tgC)]

=(tgA+tgB+tgC-tgAtgBtgC)/(1-tgAtgB-tgBtgC-tgAtgC)

3.证明

(1)cos3a=4cos'3a-3cosa('3为指数)

cos3a

=cos(2a+a)

=cos2a*cosa-sin2asina

=(2cosa^2-1)cosa-2sinacosasina

=(2cosa^2-1)cosa-2(sina^2)cosa

=(2cosa^2-1)cosa-2(1-cosa^2)cosa

=4cosa^3-3cosa

实际上可以直接利用第1小题的证明

cos3a

=cos(a+a+a)

=cosa*cosa*cosa-cosa*sina*sina-sinasinacosa-sinacosasina

=4cosa^3-3cosa 注意:sina^2=1-cosa^2

(2)tan3a=(3tana-tan'3a)/(1-3tan'2a)('3,'2为指数)

tg3a

=tg(a+a+a) 直接利用第2题的公式

=(tga+tga+tga-tga*tga*tga)/(1-tga*tga-tga*tga-tga*tga)

=(3tga-tga^3)/(1-3tga^2)