运用初中知识谁能把“海伦公式”给证明出来.(帮我详细地证明出来)先多谢下!
1个回答

证明:海伦公式:若ΔABC的三边长为a、b、c,则

SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形,“负号“-”从a左则向右经过a、b、c”,负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单,还设个什么l=(a+b=c)/2啊,多此一举!)

证明:设边c上的高为 h,则有

√(a^2-h^2)+√(b^2-h^2)=c

√(a^2-h^2)=c-√(b^2-h^2)

两边平方,化简得:

2c√(b^2-h^2)=b^2+c^2-a^2

两边平方,化简得:

h=√(b^2-(b^2+c^2-a^2)^2/(4c^2))

SΔABC=ch/2

=c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2

仔细化简一下,得:

SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4

用三角函数证明!

证明:

SΔABC=absinC/2

=ab√(1-(cosC)^2)/2————(1)

∵cosC=(a^2+b^2-c^2)/(2ab)

∴代入(1)式,(仔细)化简得:

SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4

祝您学习愉快