等差数列题 有点意思 同学们 一起做做看 我很想知道答案 小朋友们
3个回答

假设公差为d的等差数列{an}满足条件,则有

a1+2a2+3a3+……+nan

=a1+2(a1+d)+3(a1+2d)+……+n[a1+(n-1)d]

=a1(1+2+3+……+n)+d[2*1+3*2+4*3+……+n*(n-1)]

=a1*(n+1)n/2+d[2²-2+3²-3+4²-4+……+n²-n]

=a1*(n+1)n/2+d[(1²+2²+3²+4²+……+n²)-(1+2+3+4+……+n)]

=a1*(n+1)n/2+d[n(n+1)(2n+1)/6-(n+1)n/2]

=[n(n+1)/2]*[a1+d(2n-2)/3]

=n(n+1)(n+2)

a1+(2n-2)d/3=2(n+2)

(2d-6)n+3a1-2d-12=0

因为此式对任意自然数n均成立

所以2d-6=0

且3a1-2d-12=0

解得d=3,a1=6

所以an=a1+(n-1)d=6+3(n-1)=3n+3

即所求数列为an=3n+3