先化成
y=(x^2-1)^(1/2) *(x^3-1)^(-1/3)
那么
y'=[(x^2-1)^(1/2)]' *(x^3-1)^(-1/3) + (x^2-1)^(1/2) *[(x^3-1)^(-1/3)]'
显然
[(x^2-1)^(1/2)]'= 1/2 *(x^2-1)^(-1/2) *2x= x/(x^2-1)^ 1/2
[(x^3-1)^(-1/3)]'= -1/3 * (x^3-1)^(-4/3) *3x^2= -x^2 /(x^3-1)^4/3
所以
y'
=x/(x^2-1)^1/2 *(x^3-1)^(-1/3) - (x^2-1)^1/2 *x^2 /(x^3-1)^4/3
=[x*(x^3-1)- (x^2-1)*x^2] / [(x^2-1)^1/2 *(x^3-1)^4/3]
=(x^4-x-x^4+x^2) / [(x^2-1)^1/2 *(x^3-1)^4/3]
=x*(x-1) / [(x^2-1)^1/2 *(x^3-1)^4/3] 分子分母一起乘以(x^2-1)^1/2
=x*(x-1)*(x^2-1)^1/2 / [(x^2-1) *(x^3-1)^4/3]
=x*(x^2-1)^1/2 / [(x+1) *(x^3-1)^4/3]
这样就得到了你要的答案