(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b为正常
1个回答

解题思路:(1)注意到A1(2,0),A5(-2,0),且半径为2的圆C1经过Ai,故线段A1A5就是所求圆的直径,O为圆心,写出圆的标准方程即可

(2)椭圆长轴长是4,即a=2,故可设椭圆方程为

x

2

4

+

y

2

b

2

=1

,因为AiF1+AiF2=4,由椭圆定义知点A2(1,t)在椭圆上,代入椭圆方程即可用b表示t;

(3)利用焦半径公式,AiF1=exi+a,再利用椭圆定义,即可得AiF1-AiF2=2AiF1-2a=2exi,可见数列{an}的项的大小只与点Ai的横坐标有关,进而易证an+1<an

(1)∵A1A5=4,则A1A5为⊙C1的直径,∴圆心为A1,A5的中点(0,0)

∴⊙C1的方程是x2+y2=4,

∵A2(1,t),A3(0,b)在圆上,

∴b=2,t=

3;

(2)∵椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4,

∴椭圆C2的方程是

x2

4+

y2

b2=1,将A2(1,t)代入,

12

4+

t2

b2=1,得t=

3

2b;

(3)设Ai的坐标是(xi,yi),∵椭圆C2的左准线为x=−

a2

c,

AiF1

xi+

a2

c=e,则AiF1=e(xi+

a2

c)=exi+a,(其中e=

c

a为椭圆的离心率)

AiF1-AiF2=2AiF1-2a=2exi

由于{xi}递减,则对n=1,2,3,4都有an+1<an

点评:

本题考点: 椭圆的简单性质;椭圆的标准方程.

考点点评: 本题考察了圆的标准方程,椭圆的标准方程,椭圆的定义,椭圆的几何性质等基础知识及其应用,本题解答中用到了椭圆的第二定义转化AiF1=e(xi+a2c)=exi+a,新教材实验区的学生可不解第三小题,请学习时注意