圆锥曲线的统一定义里,有哪些公式啊?比如焦半径公式、通径公式等等.
1个回答

一.椭圆

1.焦半径公式 ,P为椭圆上任意一点,则│PF1│= a + eXo

│PF2│= a - eXo

(F1 F2分别为其左,右焦点)

2.通径长 = 2b²/a

3.焦点三角形面积公式

S⊿PF1F2 = b²tan(θ/2) (θ为∠F1PF2)

(这个可能有点难理解,不过结合第一定义可以较快的推,双曲线的也是同样方法)

4.(左)准点Q (自己取的名字方便叙述,准线与X轴的焦点)

过左焦点F1的任意一条线与椭圆交与A ,B 那么一定有:X轴平分∠AQB

(在右边也是一样)

二.双曲线

1.通径就不说了 2.焦半径公式(有8个,很难打符号的,不过可以根据极坐标方程来直接解答,比焦半径公式还快一些)

3.焦点三角形面积公式

S⊿PF1F2 =b²cot(θ/2) (左右支都是它)

三.抛物线

y²=2px (p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点

1.│AB│=X1 + X2 + p =2p/sin²θ (θ为直线AB的倾斜角)

2. Y1*Y2 = -p² , X1*X2 = p²/4

3.1/│FA│ + 1/│FB│ = 2/p

4.结论:以AB 为直径的圆与抛物线的准线线切

5.焦半径公式: │FA│= X1 + p/2 = p/(1-cosθ)

四. 通性 直线与圆锥曲线 y= F(x) 相交于A ,B,则

│AB│=√(1+k²) * [√Δ/│a│] (这个公式相比根号里面含有X1,X2的要简单得多哦)