已知数列{an},Sn是数列{an}的前n项和,并且满足a1=1,对任意n属于N*,S(n+1)=4an+2
1个回答

Sn+1=4an+2

Sn=4a(n-1)+2

a(n+1)=Sn+1-Sn=4an-4a(n-1)

a(n+1)-2an=2an-4a(n-1)

[a(n+1)-2an]/[an-2a(n-1)]=2,为定值.

S2=a2+a1=a2+1=4a1+2=4+2=6

a2=6-1=5

a2-2a1=5-2=3

数列{a(n+1)-2an}是以3为首项,2为公比的等比数列.

a(n+1)-2an=3×2^(n-1)

a(n+1)/2^n-2an/2^n=3×2^(n-1)/2^n

a(n+1)/2^n-an/2^(n-1)=3/2,为定值.

a1/2^(1-1)=1/1=1

数列{an/2^(n-1)}是以1为首项,3/2为公差的等差数列.

an/2^(n-1)=1+(n-1)(3/2)=(3n-1)/2

cn=an/2^n=(1/2)[an/2^(n-1)]=(3n-1)/4

c1=(3-1)/4=1/2

cn-c(n-1)=(3n-1)/4-[3(n-1)-1]/4=1/4,为定值.

数列{cn}是以1/2为首项,1/4为公差的等差数列.

望采纳