连接BB′,C′C,则S △A′B′C′=S △A′B′B+S △A′BC′+S △BB′C′,
∵BA′:A′C=m,CB′:AB′=n,AC′:BC′=k,
∴B′A:AC=1:(n-1),BA′:A′C=m:1,C′B:BA=1:(k-1),
∴
S △C′BA′
S △C′BC =
m
m+1 ,
∴S △C′BA′=
m
m+1 S △C′BC,
同理S △C′BC=
1
K S △ABC,
∴S △C′BA′=
m
m+1 ×
1
k S △ABC;①
同理:S △B′C′B=
1
k-1 S △B′BA=
1
k-1 ×
1
n-1 S △ABC;②
S △B′BA′=
m
m+1 S △B′BC=
m
m+1 ×
n
n-1 S △ABC;③
∴①+②+③得:S △A′B′C′=S △C′BA′+S △B′C′B+S △B′BA′=
mnk+1
(m+1)(n-1)(k-1) s,
故答案为:
mnk+1
(m+1)(n-1)(k-1) s.
1年前
1