在平面直角坐标系中抛物线Y=KX平方+2KX-3K(K小于0)与X轴交于A,B两点,与Y轴交于点C,点D是抛物线的顶点.
1个回答

y = kx²+2kx - 3k ( k < 0 )

y = k(x² + 2x - 3) = k(x-1)(x+3)

令 y = 0 得 x = 1 或 x = -3

所以A(-3,0),B(1,0) ( A 在 B的左侧)

(2) 令x = 0 时得 y = -3k 所以C(0,-3k)

对称轴x = -b/(2a) = -2k/(2k) = -1

当x = -1时y = k - 2k - 3k = -4k 所以D(-1,-4k)

当∠ACD = 90°时,得:3k/(-3) * k/1 = -1 解得:k = 1或-1 又k < 0 所以k = -1

当∠ADC = 90°时,得:4k/(-2) * k/1 = -1 解得:k = (根号2)/2 或 k = (- 根号2)/2

又k < 0 所以k = (- 根号2)/2

当∠DAC = 90°时,得:4k/(-2) * 3k/(-3) = -1 即:k² = -1/2 此时方程无解.

综上可知:k = (- 根号2)/2 或 k = -1

(3) 看不懂.希望能把题目再写一下.