cos3X-sin3X化成三角函数一般形式,
1个回答

先分开看sin3a 和 cos3a

sin3a=3sina-4sin³a

cos3a =4cos³a-3cosa

推导方法如下:

sin3a

=sin(2a+a)

=sin2a×cosa+cos2a×sina

=2×sina×cosa×cosa+(1-2sin²a)×sina

=2sina×(1-sin²a)+(1-2sin²a)×sina

=2sina×(1-sin²a)+(1-2sin²a)×sina

=2sina-2sin³a+sina-2sin³a

=3sina-4sin³a

cos3a

=cos(2a+a)

=cos2a×cosa-sin2a×sina

=(2cos²a-1)×cosa-2×sina×cosa×sina

=(2cos²a-1)×cosa-2(sin²a)×cosa

=(2cos²a-1)cosa-2(1-cos²a)cosa

=2cos³a-cosa-2cosa+2cos³a

=4cos³a-3cosa

cos3a-sin3a

=(4cos³a-3cosa)-(3sina-4sin³a)

=4cos³a+4sin³a-3cosa-3sina