(1)证明:3Sn^2=An(3Sn-1),即
3Sn^=[Sn-S(n-1)](3Sn-1)=3Sn^2-Sn-3SnS(n-1)+S(n-1),即
1/Sn-1/S(n-1)=3
所以{1/Sn}是等差数列
(2)1/Sn=1/s1+d(n-1)=1/A1+3(n-1)=3n-2
Sn=1/(3n-2)
Bn=Sn/(3n+1)=1/[(3n-2)(3n+1)]
Tn=1/(1*4)+1/(4*7)+1/(7*10)+.+1/[(3n-2)(3n+1)]
=[(1-1/4)+(1/4-1/7)+(1/7-1/10)+.+1/(3n-2)-1/(3n+1)]/3
=[1-1/(3n+1)]/3
=n/(3n+1)