解题思路:根据图形中每个图案中棋子的个数,8-5=3、11-8=3、14-11=3可得出规律:每一个图形中棋子的个数比上一个图形中棋子的个数多3,所以第n个图案中,棋子的个数为5+3(n-1).
由题意可得:
摆成第1个“T”字需要5个棋子;
摆成第2个“T”字需要8个棋子,8-5=3;
摆成第3个“T”字需要11个棋子,11-8=3;
摆成第4个“T”字需要14个棋子,14-11=3;
…
摆成第10个“T”字需要32个棋子;
…
由此可得出规律:摆成第n个“T”字需要5+3(n-1)=3n+2个棋子.
故答案为3n+2.
点评:
本题考点: 规律型:图形的变化类.
考点点评: 本题主要考查的是根据图中图形的变化情况,通过归纳与总结得出规律的能力,本题的关键在于相邻图形间棋子的变化个数.