1.证明下列题目:1.) sin78度+cos132度=sin18度2.) cos15度+sin15度/cos15度-s
1个回答

1(1)

sin78°+cos132°

=sin78°-sin42°

=2cos60°sin18°

=sin18°

(2)

(cos15°+sin15°)/(cos15°-sin15°)

=(sin75°+sin15°)/(sin75°-sin15°)

=(2sin45°cos30°)/(2cos45°sin30°)

=cot30°

=√3

2、x+y+z =π

sin(x+y)=sin(π-z)=sinz

cos(x+y)=cos(π-z)=-cos z

sin2x+sin2y+sin2z

=2sin(x+y)cos(x-y)+sin2z

=2sinzcos(x-y)+2sinzcosz

=2sinz[cos(x-y)+cosz]

=(2sinz)×[2cos(x+z-y)/2][cos(x-y-z)/2]

=(4sinz)cos(π/2-y)cos(π/2-x)

=(4sinz)(siny)(sinx)

=4sinxsinysinz

3、sinx+sin(x+2π/3)+sin(x+4π/3)

=sinx+2sin(x+π)cos(π/3)

=sinx+(-sinx)

=0