高等代数循环行列式求值利用行列式乘法证明下列循环行列式之值等于f(w1)f(w2).f(wn),其中f(x)=a1+a2
1个回答

A=

a1 a2 a3 ... an

an a1 a2 ... an-1

an-1 an a1 ... an-2

... ...

a2 a3 a4 ... a1

设 V=

1 1 ... 1

ε1 ε2 ... εn

ε1^2 ε2^2 ... εn^2

ε1^n-1 ε2^n-1 ... εn^n-1

则 |A||V| = |AV| =

f(ε1) f(ε2) ... f(εn)

f(ε1)ε1 f(ε2)ε2 ... f(εn)εn

... ...

f(ε1)ε1^n-1 f(ε2)ε2^n-1 ... f(εn)εn^n-1

= f(ε1)f(ε2)...f(εn)|V|

由于 ε1,ε2,...,εn 两两不同, 所以 |V|≠0

所以 |A|=f(ε1)f(ε2)...f(εn).