1.函数y=sinxcosx+sinx+cosx的值域为?
5个回答

(1)y=sinxcosx+sinx+cosx

令t= sinx+cosx=√2sin(x+∏/4),∴t∈[-√2,√2]

则,t^2=(sinx+cosx)^2=1+2sinxcosx

则,sinxcosx=(t^2-1)/2

∴y=t+(t^2-1)/2=(1/2)t^2+t-(1/2)

令y=g(t)= (1/2)t^2+t-(1/2),t∈[-√2,√2]

对称轴是t=-1,开口向上

∴最大值y=g(√2)= (1/2)( √2)^2+√2-(1/2)

=√2+1/2

最小值y=g(-1)= (1/2)( -1)^2+(-1)-(1/2)

=-1

所以,值域是[-1,√2+1/2]

(2) y=cos(2x/5)+sin(2x/5)= √2sin[(2x/5)+∏/4]

∴最小正周期是T=2∏/(2/5)=5∏

∴相邻两条对称轴之间距离是d= T/2=5∏/2

(3) ∵4tan(a/2)=1-〔tan(a/2)〕^2

∴2tan(a/2)/{1- [tan (a/2)]^2}=1/2

∴tana=2tan(a/2)/{1- [tan (a/2)]^2}=1/2

又∵0