解题思路:(1)①由已知角相等,利用等式的性质得到夹角相等,利用SAS得到三角形AOC与三角形BOD全等,利用全等三角形的对应边相等,对应角相等得到AC=BD,∠CAO=∠DBO;
②由三角形内角和定理及等量代换即可得证;
(2)AC=BD,∠APB=α,理由与(1)同理.
(1)①证明:∵∠AOB=∠COD=50°,
∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
在△AOC和△BOD中,
OA=OB
∠AOC=∠BOD
OC=OD,
∴△AOC≌△BOD(SAS),
∴AC=BD,∠CAO=∠DBO;
②根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,
∴∠APB=∠AOB=50°;
(2)AC=BD,∠APB=α,理由为:
证明:∵∠AOB=∠COD=α,
∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
在△AOC和△BOD中,
OA=OB
∠AOC=∠BOD
OC=OD,
∴△AOC≌△BOD(SAS),
∴AC=BD,∠CAO=∠DBO,
根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,
∴∠APB=∠AOB=α.
故答案为:相等.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.