根据题意有:
直线l2的斜率k2=(a2-a1)/(2-1)=a2-a1;
直线l1的斜率k1=(s2/2-s1)/(2-1)=s2/2-s1=(a1+a2)/2-a1=(1/2)(a2-a1).
根据到角公式有:
tanA=(K2-K1)/(1+K1K2)=(1/2)(a2-a1)/[1+(1/2)(a2-a1)]^2=(a2-a1)/[2+(a2-a1)^2]
=1/[2/(a2-a1) +(a2-a1)];
对于分母,运用不等式定理有:
[2/(a2-a1) +(a2-a1)]>=2√[2/(a2-a1) *(a2-a1)]=2√2;
所以有:
tanA