已知方程x^2-5x+k=0有两个整数解,求k的负整数解
2个回答

x=(5±√)/2 为整数

首先 n= √ 应为奇整数

设√ =n

k=(25-n^2)/4

n = 1 k = 6

n = 3 k = 4

n = 5 k = 0

n = 7 k = - 6

n = 9 k = -14

n = 11 k = -24

...

所以 k 的 负整数解为

k=(25-(2*m+5)^2)/4, m = 1,2,3, .

证明 k=(25-(2*m+5)^2)/4 ,对所有 m 为 正整数都成立

m=1 k=-6 成立

m = n 时成立 k= -N

m = n+1 k = [25-(2(n+1)+5)^2]/4

= [25-(2n+5+2)^2)]/4

= {25-[(2n+5)^2+4(2n+5)+4]}/4

= [25-(2n+5)^2]/4-(2n+6)

= -N -(2n+6) 仍成立

正毕

所以

所以 k 的 负整数解为

k=(25-(2*m+5)^2)/4, m = 1,2,3, .