x=(5±√)/2 为整数
首先 n= √ 应为奇整数
设√ =n
k=(25-n^2)/4
n = 1 k = 6
n = 3 k = 4
n = 5 k = 0
n = 7 k = - 6
n = 9 k = -14
n = 11 k = -24
...
所以 k 的 负整数解为
k=(25-(2*m+5)^2)/4, m = 1,2,3, .
证明 k=(25-(2*m+5)^2)/4 ,对所有 m 为 正整数都成立
m=1 k=-6 成立
设
m = n 时成立 k= -N
m = n+1 k = [25-(2(n+1)+5)^2]/4
= [25-(2n+5+2)^2)]/4
= {25-[(2n+5)^2+4(2n+5)+4]}/4
= [25-(2n+5)^2]/4-(2n+6)
= -N -(2n+6) 仍成立
正毕
所以
所以 k 的 负整数解为
k=(25-(2*m+5)^2)/4, m = 1,2,3, .