中国剩余定理,此定理源于我国古代数学名著《孙子算经》,其中记载了这样一个“物不知数”的问题:“今有物不知数,三三数之剩二
4个回答

解题思路:根据“三三数之剩二,五五数之剩三,七七数之剩二”找到三个数:第一个数能同时被3和5整除;

第二个数能同时被3和7整除;第三个数能同时被5和7整除,将这三个数分别乘以被7、5、3除的余数再相加即可求出答案.

我们首先需要先求出三个数:

第一个数能同时被3和5整除,但除以7余1,即15;

第二个数能同时被3和7整除,但除以5余1,即21;

第三个数能同时被5和7整除,但除以3余1,即70;

然后将这三个数分别乘以被7、5、3除的余数再相加,即:15×2+21×3+70×2=233.

最后,再减去3、5、7最小公倍数的若干倍,即:233-105×2=23.

故答案为:23,105k+23.

点评:

本题考点: 带余除法.

考点点评: 本题考查的是带余数的除法,根据题意下求出15、21、70这三个数是解答此题的关键.