F(x)=∫[0,x^2](t^2-1)e^tdt
= ∫(t^2-1)de^t [0,x^2]
=(t^2-1)e^t-∫2t e^t dt [0,x^2]
=(t^2-1)e^t-∫2t de^t [0,x^2]
=(t^2-1)e^t-2te^t+2e^t+C [0,x^2]
=e^t (t^2+1-2t) +C [0,x^2]
=e^(x^2) (x^4-2x^2)
F'(x)=e^(x^2) (4x^3-4x+2x^5-4x^3)=e^(x^2) (2x^5-4x)=0
x=0,+/-2^(1/4),x^2=0,2^0.5
F(0)=0,F(+/-2^0.25)=e^(2^0.5) *(2-2*2^0.5)
Fmax=e^(2^0.5) *(2-2*2^0.5)
Fmin=0