立方数列求和求和1^3+2^3+3^3+4^3+…+n^3=?
2个回答

设1^3+2^3+.n^3=[n(n+1)/2]^2 成立 则1^3+2^3+.n^3+(n+1)^3=[n(n+1)/2]^2+ (n+1)^3 (化间)=(n^4+6n^3+13n^2+12n+4)/4 又因为[(n+1)(n+1+1)/2]^2=(n^4+6n^3+13n^2+12n+4)/4 (化间) 所以1^3+2^3+.n^3+(n+1)^3=[n(n+1)/2]^2+ (n+1)^3=[(n+1)(n+1+1)/2]^2 所以1^3+2^3+.n^3=[n(n+1)/2]^2 成立 这是数学归纳法 基本思想是验证n=1时等式成立 n=2时等式成立.设n=k时等式成立 只要证明n=k+1时等式仍成立 则无论k=任何数 等式都成立 故等式恒成立