一次掷硬币游戏,共有六位学生参加.游戏规定每位学生都将一枚均匀的硬币连抛两次,并记录结果.若两次中至少有一次正面向上,则
1个回答

(1)每位学生都将一枚均匀的硬币连抛两次,

结果共有(正,正),(正,反),(反,正),(反,反)4种,

其中该同学抛掷成功的情况有(正,正),(正,反),(反,正)三种

∴学生甲抛掷成功的概率 P=

3

4 (4分)

(II)抛掷成功的人数不少于失败的人数是抛掷成功的人数少于失败的人数共包括如下几种情况:

六名学生都失败,概率为

C 06 (

3

4 ) 0 (

1

4 ) 6

五名学生失败,一名学生成功,概率为

C 16 ×

3

4 × (

1

4 ) 5

四名学生失败,二名学生成功,概率为

C 26 (

3

4 ) 2 (

1

4 ) 4

故抛掷成功的人数不少于失败的人数的概率

P=1-(

C 06 (

3

4 ) 0 (

1

4 ) 6 +

C 16 ×

3

4 ×(

1

4 ) 5 +

C 26 (

3

4 ) 2 (

1

4 ) 4 ) =

1971

2048 (8分)

(III)∵每名学生抛掷成功的概率均相等

且每名学生抛掷成功的概率均为

3

4

∴ Eξ=6×

3

4 =

9

2 (12分)