复数平面上 0,1+i,i 通过分式线性变换 0,2,无限...
4个回答

f(z)=(az+b)/(cz+d)

0,1+i,i 通过分式线性变换 0,2,无限...

f(0)=0

f(1+i)=2

f(i)=∞

f(0)=(b)/(d)=0

b=0

f(i)=∞

f(i)=(ai)/(ci+d)=∞

ci+d=0

f(1+i)=2

f(1+i)=(a(1+i)+b)/(c(1+i)-ci)

=(a(1+i))/(c)=2

a/c=2/(1+i)

f(z)=(az+b)/(cz+d)

=(az)/(cz-ci)

=(2z)/[(1+i)(z-i)]

=[(z)(1-i)]/(z-i)

f(z)=[(z)(1-i)]/(z-i)

不动点

z=[(z)(1-i)]/(z-i)

z=0或z=1

[f(z)-0]/[f(z)-1]={[(z)(1-i)]/(z-i)-0}/{[(z)(1-i)]/(z-i)-1}

=[(z)(1-i)]/{[(z)(1-i)]-z+i}

=[(z)(1-i)]/[-(iz)+i]

=[(z)(1-i)]/(z-1)(-i)

=[1-i][(z-0)/(z-1)]

f^n(z)=Q(z)后

n次迭代

[f(z)-0]/[f(z)-1]=a(1,z)

[f(f(z))-0]/[f(f(z))-1]=a(2,z)

[f(f(f(z)))-0]/[f(f(f(z)))-1]=a(3,z)

a(n,z)=[1-i]^n[(z-0)/(z-1)]

[Q(z)-0]/[Q(z)-1]=[1-i]^n[(z-0)/(z-1)]

1/[Q(z)-1]=[1-i]^n[(z-0)/(z-1)]-1

[Q(z)-1]=1/{[1-i]^n[(z-0)/(z-1)]-1}

Q(z)=1/{[1-i]^n[(z-0)/(z-1)]-1}+1

f^n(z)=1/{[1-i]^n[(z-0)/(z-1)]-1}+1

表达式求出来了,我不知道什么是恒等啊!你告诉我什么是恒等,往下我就会做啦!

如果f^n(z)=z

1/{[1-i]^n[(z-0)/(z-1)]-1}+1 =z

[1-i]^n[(z-0)/(z-1)]-1=1/(z-1)

[1-i]^n[(z-0)/(z-1)]=(z-0)/(z-1)

[(1-i)^n-1][(z-0)/(z-1)]=0

n>=1时

|(1-i)^n-1|>0

所以

(1-i)^n-1不=0

(z-0)/(z-1)=0

f^n(z)=z如果是恒等变换

要求对复数域内全体(除了z=i)都有f^n(z)=z

有无数根,矛盾

所以不是恒等变换