正.余弦定理应用在三角形ABC中,设a/c=(√3)-1,(tanB)/(tanC)=(2a-c)/c,求ABC
1个回答

因(tanB)/(tanC)=(2a-c)/c

切化弦即得:

(sinB/sinC)(cosC/cosB)=(2a-c)/c

利用正.余弦定理带入得:

(b/c)[(a²+b²-c²)(2ac)/(a²+c²-b²)(2ab)]=(2a-c)/c

化简整理得:

a²+c²-b²=2bc(*)

故cosB=(a²+c²-b²)/(2ac)=1/2

故B=π/3

由(*),将a/c=(√3)-1带入得到:

b²=3(2-√3)c²

故sinC/sinB=c/b

故sinC=sinB*(c/b)

=(√3/2)√[1/(3(2-√3))]

=√{1/[4(2-√3)}

=√[(2+√3)/4]

=√[(4+2√3)/(4*2)]

=√[(1+√3)²/(4*2)]

=(√2/2)*(1+√3)/2

=(√2/2)(sinπ/6+cosπ/6)

=sin(π/6+π/4)

=sin(5π/12)

易知tanC>0

故0