第一题:第二题:
1个回答

(1)

let z=a+bi

√3z^2 -11 =(5√3-z^2) i

√3(a^2-b^2)-11 +2√3abi = ((5√3-a^2+b^2-2abi)i

√3(a^2-b^2)-11 =2ab (1)

2√3ab = 5√3-a^2+b^2 (2)

from (1) (2)

√3(a^2-b^2)-11 = (5√3-a^2+b^2 )/√3

3(a^2-b^2)-11√3 = 5√3-a^2+b^2

a^2-b^2 = 4√3

|z|= (a^2-b^2)^(1/2) = 2.3^(1/4)

(2)

|z1|=|z2|=1

let z1=a1+b1i

z2=a2+b2i

a1^2-b1^2=1 (3)

a2^2-b2^2=1 (4)

z1+z2=i

(a1+a2)+(b1+b2)i=i

a1+a2=0 (1) and

b1+b2=1 (2)

(3)-(4)

a1^2-a2^2 -(b1^2-b2^2) =0

b1^2-b2^2 =0 ( a1 = -a2 from (1) )

b1^2+(1-b1)^2 = 0 ( from (2):b2=1-b1)

1-2b1=0

b1= 1/2

b2=1/2

a1= √5/2 or - √5/2

when a1= √5/2 ,a2=-√5/2

when a1= -√5/2 ,a2=√5/2

z1z2

=(a1+b1i).(a2+b2i)

= (a1b2-b1b2) + (a1b2+a2b1)i

= (√5-1)/4+ [(√5+1)/4] i or (-√5-1)/4 + [(-√5-1)/4]i