(1)
值域为[1,2],
则2≤(3x^2+2x+n)/(mx^2+1)≤4
2mx^2+2≤3x^2+2x+n≤4mx^2+4
x属于R
A) 2mx^2+2≤3x^2+2x+n
(3-2m)x^2+2x+n-2≥0
即∆≤0,得4m+3n-2mn-7≥0且3-2m>0,m=1
所以n≥3
B)3x^2+2x+n≤4mx^2+4
(4m-3)x^2-2x+4-n≥0
即∆≤0,得16m-13-4mn+3n≥0,且4m-3>0,m=1
所以:n≤3
故得:m=1 n=3
(2)
f(x)=log2{(3x^2+2x+1)/(mx^2+1)}值域为R
得:(3x^2+2x+1)/(mx^2+1)>0
又3x^2+2x+1总是大于0
mx^2+1>0
m>-1/x^2
所以m≥0