解题思路:前6个3的幂1、3、9、27、81、243可以组成26-1=63个不同的符合要求的数,第64项为37=729,第65项开始,在729的基础上加1、3、9、27、81中的某个,有C(5)1C51+C52+…+C55=31个,按此规律可求答案
前6个3的幂1、3、9、27、81、243
可以组成26-1=63个不同的符合要求的数,第64项为37=729
第65项开始,在729的基础上加1、3、9、27、81中的某些,有C(5)1C51+C52+…+C55=31个
第96项为729+243,接下来是729+243+1、729+243+3、729+243+1+3
所以第100项为729+243+9=981.
故答案为:981
点评:
本题考点: 数列的概念及简单表示法.
考点点评: 本题主要考查了数列中项的求解,解题的关键是要求学生具备观察、分析、归纳、推理的能力;在理解数列关系的前提下,进行归纳推理,培养学生的知识、方法迁移能力.提高学生分析问题和解决问题的能力.