最佳答案:连续的函数左右极限存在且相等是指lim (f(x))在x0出的左右极限存在且相等导数左右极限存在且相等是指,lim {(f(x)-f(x0)/(x-x0)}在x
最佳答案:连续的函数左右极限存在且相等是指lim (f(x))在x0出的左右极限存在且相等导数左右极限存在且相等是指,lim {(f(x)-f(x0)/(x-x0)}在x
最佳答案:一元函数在某点的极限存在,则该函数不一定在该点连续;若函数在某点连续,则一定在该点存在极限;所以是必要非充分条件.
最佳答案:是的 若左连续 则左极限存在 而若右不连续 则右极限可能存在 但不可能等于左极限 否则会同时左右连续.
最佳答案:C,连续但不可导连续是 x->0 时 |f(x)|0 所以lim f(x)=0=f(0)但lim f(x)/x =lim sin(1/x)/根号|x| 极限不存
最佳答案:连续,极限不一定存在.极限存在,一定连续.
最佳答案:3、 函数的四个基本特性.(1) 有界性:设存在正数M,使得一切x 都有 ,则f(x)在[a,b]上有界.(2) 奇偶性:在以原点为对称的区间上,若f(-x)=
最佳答案:一点连续即极限值等于函数值,左极限等于右极限 ,这个说法是正确的,但如果在边界上左或右极限不存在,虽然是连续的但解释不通 我是对其充要条件感到疑惑,既然是边界,
最佳答案:1 .例如 Y=sinx/x 显然 X=0处无定义是不连续的 但是 X逼近0的继续为1 (连续的时候必须 函数值与极限值相等)2.是的3.通过教材的安排就可以看
最佳答案:正确!函数在某一点左右极限均存在,但不相等时的情况!我不记得第一类间断点的定义了,按定义来判断,是不会错的!
最佳答案:当然可以 “直接判断有导数存在就可以判定连续了”,但求左右导数未必比求左右极限简单.
最佳答案:是,并且是零.可以假定f>=0,否则以|f| 代替f,仍然Lebesgue可积,并且一致连续.如果能证明 |f| 的极限是0,那么自然推出f的极限是0.现在f>
最佳答案:极限与极值不是同一个概念连续函数处处都有极限极值是指在一个局部区间内的最大值,即比左右两边的点值都要大连续区间之内极值不一定存在,如一个单调递增的函数,y=x,
最佳答案:推出f(0)=0是没错,但是还能进一步写成f(x)/x = [f(0+x) -f(0)]/x对比一下导数f'(0)的定义是什么当然这里推不出f'(0)=0
最佳答案:函数的连续点必是有定义的点,这是对的函数的极限存在的点必是有定义的点,这是错的,函数极限存在与否与该点有没有定义无关
最佳答案:应该是证明其左右导数相等、但是如果该点左右函数表达式相等就不用再分左右导数求了